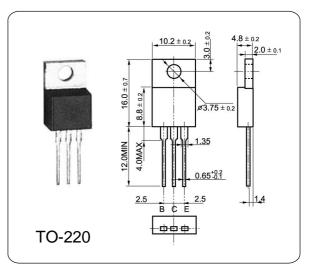


TIGER ELECTRONIC CO.,LTD

Product specification

600V N-Channel MOSFET


FQP10N60

DESCRIPTION

These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar, DMOS technology.

This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switch mode power supplies.

ABSOLUTE MAXIMUM RATINGS (Ta = 25 $^{\circ}$ C)								
Parameter	Symbol	Value	Unit					
Drain-Source Voltage	V _{DSS}	600	V					
Drain Current - Continuous	Ι _D	9.5	А					
Drain Current - Pulsed	I _{DM}	38	A					
Gate-Source Voltage	V _{GSS}	±30	V					
Power Dissipation	PD	156	W					
Max. Operating Junction Temperature	Tj	150	°C					
Storage Temperature	T _{stg}	-55~150	°C					

ELECTRICAL CHARACTERISTICS ($Ta = 25^{\circ}C$)

Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Drain-Source Breakdown Voltage	BV _{DSS}	$V_{GS} = 0V, I_D = 250 \mu A$	600			V
Zero Gate Voltage Drain Current	IDSS	V _{DS} =600V, V _{GS} =0V			1.0	uA
Gate-Body Leakage Current, Forward	I _{GSSF}	V_{GS} =30V, V_{DS} =0V			100	nA
Gate-Body Leakage Current, Reverse		$V_{GS} = -30V, V_{DS} = 0V$			-100	nA
Gate Threshold Voltage	V _{GS(th)}	V_{DS} = V_{GS} , I_{D} =250 μ A	2.0		4.0	V
Static Drain-Source On-Resistance	R _{DS(on)}	V_{GS} = 10 V, I_{D} = 4.75 A		0.6	0.73	W
Drain-Source Diode Forward Voltage	V _{SD}	$V_{GS} = 0 V, I_{S} = 9.5 A$			1.4	V